Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zuo-Xiang Wang,* Yan Lan, Lu-Tong Yuan and Chun-Yi Liu

Department of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China

Correspondence e-mail:
wangzx0908@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.048$
$w R$ factor $=0.115$
Data-to-parameter ratio $=15.1$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

4-(4-Methoxyphenyl)-3-methyl-5-(2-pyridyl)-4H-1,2,4-triazole dihydrate

In the title compound, $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O} \cdot 2 \mathrm{H}_{2} \mathrm{O}$, the 1,2,4-triazole, pyridine and benzene rings do not share a common plane. The crystal structure is stabilized by $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ intermolecular hydrogen-bond interactions.

Comment

Substituted 1,2,4-triazoles have attracted considerable attention in recent years (Bencini et al., 1987; Koningsbruggen et al., 1997; Moliner et al., 1998; Klingele \& Brooker, 2003). This is mainly because of the fact that their ligand strength is in the appropriate region to give spin-crossover complexes with iron(II) salts, which could be used as molecular-based memory devices, displays and optical switches (Garcia et al., 1997; Kahn \& Martinez, 1998). We have synthesized a new compound, 4-(p-methoxyphenyl)-3-methyl-5-(2-pyridyl)-1,2,4-triazole, and we report here the crystal structure of its dihydrate, (I).

(I)

The three rings of (I) do not share a common plane. The dihedral angle between the 1,2,4-triazole and pyridine rings is $38.22(9)^{\circ}$, and that between the 1,2,4-triazole and substituted benzene rings is $82.25(6)^{\circ}$.

Two N atoms of the 1,2,4-triazole ring form intermolecular hydrogen bonds with the water molecules (Table 2). An additional strong hydrogen-bond interaction involving the water molecules is observed.

Experimental

The title compound was synthesized by the reaction of $4,4^{\prime}$ dimethoxyphenylphosphazoanilide with N-acetyl- N^{\prime}-(2-pyridoyl)hydrazine in o-dichlorobenzene at $463-473 \mathrm{~K}$ (Grimmel et al., 1946; Klingsberg, 1958). Single crystals suitable for X-ray diffraction were obtained by recrystallization from water.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O} \cdot 2 \mathrm{H}_{2} \mathrm{O} \\
& M_{r}=302.33 \\
& \text { Monoclinic, } P 2_{4} / c \\
& a=11.629(3) \AA \\
& b=9.927(2) \AA \\
& c=14.019(3) \AA \\
& \beta=106.897(4){ }^{\circ} \AA^{3} \\
& V=1548.5(6) \AA^{3} \\
& Z=4
\end{aligned}
$$

Received 10 May 2005
Accepted 31 May 2005
Online 10 June 2005

Data collection

Bruker SMART APEX CCD areadetector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2000)
$T_{\text {min }}=0.97, T_{\text {max }}=0.98$
7967 measured reflections
3038 independent reflections 2217 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-14 \rightarrow 14$
$k=-6 \rightarrow 12$
$l=-17 \rightarrow 16$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0683 P)^{2}\right. \\
& \quad+0.0126 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.00 \\
& \Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.13 \mathrm{e} \mathrm{~A}^{-3}
\end{aligned}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 6-\mathrm{N} 2$	$1.295(2)$	$\mathrm{C} 11-\mathrm{O} 1$	$1.361(2)$
$\mathrm{C} 6-\mathrm{N} 1$	$1.379(2)$	$\mathrm{C} 15-\mathrm{O} 1$	$1.414(2)$
$\mathrm{C} 7-\mathrm{N} 3$	$1.278(2)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.396(2)$
$\mathrm{C} 7-\mathrm{N} 1$	$1.374(2)$		
$\mathrm{N} 2-\mathrm{C} 6-\mathrm{N} 1$	$110.48(14)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 6$	$103.61(14)$
$\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 1$	$122.70(15)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$126.22(14)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 1$	$126.79(15)$	$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 8$	$130.10(14)$
$\mathrm{N} 3-\mathrm{C} 7-\mathrm{N} 1$	$111.19(15)$	$\mathrm{C} 6-\mathrm{N} 2-\mathrm{N} 3$	$107.09(14)$
$\mathrm{N} 3-\mathrm{C} 7-\mathrm{C} 14$	$126.65(15)$	$\mathrm{C} 7-\mathrm{N} 3-\mathrm{N} 2$	$107.60(14)$
$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 14$	$122.04(15)$		

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 2-\mathrm{H} 2 D \cdots \mathrm{~N} 3^{\mathrm{i}}$	0.85	2.43	$2.906(2)$	116
$\mathrm{O}^{\mathrm{H}}-\mathrm{H} 3 B \cdots \mathrm{~N} 2^{\mathrm{i}}$	0.85	2.29	$2.848(2)$	124
$\mathrm{O}^{\mathrm{H}}-\mathrm{H} 2 C \cdots \mathrm{O}^{\mathrm{ii}}$	0.85	2.06	$2.783(2)$	143

Symmetry codes: (i) $x, y-1, z$; (ii) $x,-y+\frac{1}{2}, z+\frac{1}{2}$.

All H atoms were located in a difference Fourier map and allowed to ride on their parent atoms at distances of $0.85(\mathrm{O}-\mathrm{H}), 0.93(\mathrm{C}-\mathrm{H}$ aromatic) and $0.96 \AA(\mathrm{C}-\mathrm{H}$ methyl $)$, with $U_{\text {iso }}(\mathrm{H})$ values of $1.2-1.5$ times $U_{\text {eq }}$ of the parent atoms.

Figure 1
The molecular structure of the title compound, with the atom-labelling scheme. Displacement ellipsoids are shown at the 67% probability level.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

References

Bencini, A., Gatteschi, D., Zanchini, C., Haasnoot, J. G., Prins, R. \& Reedijk, J. (1987). J. Am. Chem. Soc. 109, 2926-2931.

Bruker (2000). SMART (Version 5.625), SAINT (Version 6.01), SHELXTL (Version 6.10) and $S A D A B S$ (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Garcia, Y., Koningsbruggen, P. J., Codjovi, E., Lapouyade, R., Kahn, O. \& Rabardel, L. (1997). J. Mater. Chem. 7, 857-858.
Grimmel, H. W., Guenther, A. \& Morgan, J. F. (1946). J. Am. Chem. Soc. 68, 539-542.
Kahn, O. \& Martinez, C. J. (1998). Science, 279, 44-48.
Klingele, M. H. \& Brooker, S. (2003). Coord. Chem. Rew. 241, 119-132.
Klingsberg, E. (1958). J. Org. Chem. 23, 1086-1087.
Koningsbruggen, P. J., Hassnoot, J. G., Kooijman, H., Reedijk, J. \& Spek, A. L. (1997). Inorg. Chem. 36, 2487-2489.

Moliner, N., Munoz, M. C., Koningsbruggen, P. J. \& Real, J. A. (1998). Inorg. Chim. Acta, 274, 1-6.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

